
CISC 3120 Final Review Guide

Main Topics

Java Fundamentals

I expect you to have a basic mastery of control structures (loops, conditionals), statements, arrays,
function declaration, de$nition, and invocation, and language syntax. I won’t be testing you explicitly
on this, but of course you won’t be able to write much code without this! Exam questions will focus
on:

Basic object-oriented syntax and terminology (class, object, instance variable, subclass, etc)
Primitive vs reference types.
Java API, packages.
Public, private, and package access.
Polymorphism: inheritance and interfaces
Overloading and overriding
Object lifecycle: object construction, garbage collection.
Static versus instance members
Design pa5erns in Java, especially Decorator, Strategy, MVC.

Professional Practice

Style and Documentation
Version control and Git/GitHub

Graphics and User Interface

Basics of Swing Basics of Swing application construction
Drawing with Graphics objects
UI components and events: interfaces, event handlers

Network Programming

Streams; Exceptions.
Protocols, IP, TCP, and Sockets
Websockets

Structure and Tactics
See the midterm review sheet!

>e last page of this document will be appended to the exam, a very condensed API! >at is, I’ll give
you this sheet of method names and parameters; you will need to know how/where to use them. (Of
course, not all of these will necessarily appear on the exam.) If you need more specialized methods, I
will describe them in the exam question.

1. Here are two of the CheckStrategy examples from the reading

public class StartWithT implements CheckStrategy
{ public boolean check(String s)

{ if(s == null || s.length() == 0) return false;
return s.charAt(0) == 't';

}
}

public class LongerThanN implements CheckStrategy
{ public LongerThanN(size n) {this.n = n;}

private int n;

public boolean check(String s)
{ if(s == null) return false;

return s.length() > n;
}

}

Write a Strategy class that checks to see if a word starts with a given character—just as
LongerThanN checks for words longer than a given length.

2. You are implementing an endless runner. In your initial release, the character will be able to walk
or run, but in future releases, you may be adding Bying, swimming, crawling underground, and so
on. Design a Strategy (an interface) to help you deal with this uncertain range of possibilities. Give
examples (names) of classes that might implement this strategy.

3. >e reading claims that the Java API classes Reader and BufferedReader are a good example of
the Decorator pa5ern. What is the Reader class?

a) A class that reads input from a $le or the keyboard.
b) An abstract class with methods for reading characters from some source.
c) A class that implements the Readable and Closeable interfaces.
d) b and c.
e) All of the above.

4. As far as you can tell from the API+documentation, what is the object-oriented relationship
between BufferedReader and Reader?

a) BufferedReader IS-A Reader
b) BufferedReader HAS-A Reader
c) Both a and b
d) Neither a nor b

5. So how does a BufferedReader “decorate” a Reader object (that is, an object of some concrete
subclass of Reader)?

a) It separates (1) the user’s request to read something from (2) the action of reading directly
from the character source.

b) It “collects” a bunch of read requests, then issues them all at once to the character source.
c) It reads a big chunk of characters from the character source, then uses that chunk to respond

to read requests.
d) It counts the number of lines read by the Reader.

6. Which of these other descendants of Reader are Decorators? (Possible multiple answers!)

a) CharArrayReader
b) FilterReader
c) InputStreamReader
d) LineNumberReader
e) StringReader

7. Which sentence from the reading is the best capsule explanation for the Decorator pa5ern?

a) To the client the decorator is invisible.
b) You can think of a decorator as a shell around the object decorated.
c) Decorators are used to provide additional functionality to an object of some kind.
d) >e key to a successful Decorator is to have a set of objects de$ned by an interface.
e) >e decorator implements the same interface as the object it decorates.

8. I’m working on a graphic animation library. One fundamental element is a Shape, which has the
behaviors

void paint(Graphics g)
Point getCenter()
void move(int deltaX, int deltaY)

I would also like some Shapes to move automatically (say, some number of pixels per frame), some
Shapes to rotate automatically (some number of degrees per frame), and some Shapes to shrink
automatically (some number of pixels per frame). And, of course, some Shapes may need to do
several of these things at once.

Come up with a Decorator-based design for this problem.

9. >e Iterator design pa5ern is most closely related to which part of Java?

a) Arrays
b) Enums
c) >e enhanced for loop
d) Primitive type wrapper classes

10. Which of these is not a good reason to implement an Iterator?

a) If you change your mind about how you store your data, you don’t want to change how you
traverse it.

b) You want to be sure that you can “visit” all elements in the most eOcient way possible.
c) You want to be able to traverse your complex data in several diPerent ways.
d) You don’t want users to have to know the details of how you store data.

11. What is the essential purpose of the Model-View-Controller pa5ern?

a) Make it easier to “plug in” diPerent GUI components
b) Make it easier to combine GUIs and networks (such as the WWW)
c) Separate information from how it is presented
d) Separate the GUI into ‘display’ and ‘control’ elements
e) b and c

12. Which of these are typical relationships among the Model, View, and Controller?

a) Controller tells Model to update its data
b) Model tells View that data has changed.
c) Model sends an “update” event to the Controller
d) a and b
e) a and c

13. >ink about the base 4 calculator. Which MVC component(s) does the Base4CalcState (the
“actual” calculator) represent?

a) Model
b) View
c) Controller
d) a and b
e) b and c

14. In an application using the MVC pa5ern, how many of each element is advisable?

a) Only one of each element
b) One model; as many views and controllers as necessary
c) One view; as many models and controllers as necessary
d) One controller; as many view and models as necessary
e) As many of each element as necessary

15. True or false: a Swing component can be part of the View, or part of the Controller, but not both.

a) True
b) False

16. Do the exercise described on page 6 of “simple MVC example in Java” from the reading. >e
Clock code as given is on GitHub at h5ps://github.com/BC-CISC3120-S17/class19-code

>e exercise instructions:

• Remove the tick bu5on

• Add a Timer object to ClockController

◦ Remember to start() it aRer creating it

• Create a class to listen to the timer and advance the clock

◦ It must implement ActionListener

◦ actionPerformed() must increment the clock every second (1000 milliseconds)

◦ You may use an anonymous inner class, similar to those that listen to the bu5ons

◦ You can use the tickButton actionPerformed() logic

• No changes in ClockView or ClockModel

Swing allows you to create a Timer that will send an event once or repeatedly aRer a timeout that
you set.

>e event is an ActionEvent. >e listener must implement the ActionListener interface

How to create a Timer: Timer t = new Timer(intervalInMillisecs, listener);

How to start and stop a Timer: t.start(); t.stop();

How to tell a Timer to $re only once: t.setRepeats(false);

17. Which sort of stream is “lower level,” or, closer to the hardware?

a) Connection stream

b) Chain stream

18. Serialization saves not just an object, but the

a) object chart

b) object graph

c) object diagram

d) subclass tree

19. Serializable is a marker interface, which means

a) It contains a single method called marker() (the signature may vary across diPerent marker

interfaces)

b) It contains mark() and unmark() methods, as well as any other methods speci$c to the interface

c) It contains no methods

d) It is in the package javax.sharpie.

20. When is a NotSerializableException exception thrown (thrown)?

a) When you try to serialize an object of a class that doesn’t implement Serializable.

b) When you try to serialize an object that contains an object of a class that doesn’t implement

Serializable.

c) When you try to deserialize an object of a class that doesn’t implement Serializable.

d) a and b

e) a, b, and c

21. What is “risky” about the object serialization process?

a) Creating an ObjectInputStream object

b) Creating an ObjectOutputStream object

c) Reading an object from an ObjectInputStream

d) Writing an object to an ObjectOutputStream

e) All of the above

22. Consider the Siz Card code on p. 457. An exception is dealt with in a catch block—a message is wri5en
to the console.

(a) What are the other possible places this exception could be handled?
(b) Revise this code so that the exception is handled by communicating with the user through the GUI.

23. Consider the code snippet on p. 463, which shows how the BeatBox program saves a drum “pa5ern.”

Given that these pa5erns are represented in the GUI by JCheckBox objects, it kinda seems like the saving
process should involve serializing the 256 JCheckBox objects that represent the pa5ern. But it doesn’t. Give
at least 2 solid reasons the book uses the approach it does.

24. What is the diPerence between a ServerSocket and a Socket?

a) >e server’s job is to connect; the client’s job is to accept.

b) >e client’s job is to connect; the server’s job is to accept.

c) >e server produces information; the client consumes it.

d) >e client produces information; the client consumes it.

25. How does a ServerSocket object let us communicate with the client?

a) It uses classes and methods from Java’s SocketStream API.

b) Provides an InputStream or OutputStream object we can use to read/write.

c) Provides a Socket object representing a connection with the client.

d) Connects the local keyboard and screen with the client.

26. Suppose I wanted to write a version of the DailyAdviceClient for people having especially bad days.
I write the following in the try block:

Socket s = new Socket(“127.0.0.1”, 4242);
InputStreamReader streamReader = new InputStreamReader(s.getInputStream());
BufferedReader reader = new BufferedReader(streamReader);

String advice = reader.readLine();
System.out.println(“Today you should: “ + advice);

advice = reader.readLine();
System.out.println(“Today you also should: “ + advice);

reader.close();

What should the result be?

a) Two fresh and delicious pieces of advice.

b) >e client application will throw an exception.

c) >e server application will throw an exception.

d) Both applications will “freeze.”

(What actually happens?)

27. Suppose I want the DailyAdviceServer to be a li5le more helpful; when a new connection is made, it
should identify itself to the client, so in the while loop I write

Socket sock = serverSock.accept();
PrintWriter writer = new PrintWriter(sock.getOutputStream());
writer.println(“Welcome to the Daily Advice Server!”);
String advice = getAdvice();
writer.println(advice);
writer.close();
System.out.println(advice);

What will be the result?

a) >e client user sees “Welcome to the Daily Advice Server!” followed by a yummy piece of advice.

b) >e client user sees some strange advice.

c) >e client application throws an exception.

d) >e server application throws an exception.

e) Both applications freeze.

28. >e ServerSocket accept() method is blocking. >is means

a) All other clients are prevented from accessing the server until it $nishes talking with this client.

b) Nothing else is going to happen in the program until the accept() method $nishes making its

connection.

c) >e program doesn’t need to use the CPU until the accept() method hears from a client.

d) Both a and b.

e) Both b and c.

29. What might a “non-blocking” accept() method do diPerently?

a) Communicate with binary data instead of text.

b) Return immediately, even if no client has tried to connect.

c) Refuse clients if the server is too busy.

d) Use a diPerent port number.

Graphics

drawLine(int x1, int y1, int x2, int y2)
drawOval(int x, int y, int width, int height)
drawRect(int x, int y, int width, int height)
drawString(String str, int x, int y)
setColor(Color c)

JTextField/JTextArea

JTextField()
JTextField(int columns)
JTextField(String text)
JTextField(String text, int columns)
String getText()
setText(String t)

Component

addKeyListener(KeyListener l)
addMouseListener(MouseListener l)
addActionListener(ActionListener l)

ActionListener

actionPerformed(ActionEvent e)

KeyListener

keyPressed(KeyEvent e)
keyReleased(KeyEvent e)
keyTyped(KeyEvent e)

MouseListener

mouseClicked(MouseEvent e)
mouseEntered(MouseEvent e)
mouseExited(MouseEvent e)
mousePressed(MouseEvent e)
mouseReleased(MouseEvent e)

EventObject

Object getSource()

Observer

update(Observable obs, Object o)

Observable

addObserver(Observer o)
notifyObservers()
setChanged()

Socket

connect(SocketAddress endpoint)
close()
InetAddress getLocalAddress()
InputStream getInputStream()
OutputStream getOutputStream()

ServerSocket

Socket accept()

ServerEndpoint/
ClientEndPoint

onClose(Session session, CloseReason
reason)
onError(Session session, Throwable thr)
onOpen(Session session)
onMessage(String message, Session session)
onMessage(Object object, Session session)

Session

RemoteEndpoint.Basic getBasicRemote()
Map<String,Object> getUserProperties()

Encoder.Text<T>

String encode(T object)

Decoder.Text<T>

T decode(String s)
boolean willDecode(String s)

Map<String,Object>

get(String key)
put(String key, Object value)

RemoteEndpoint.Basic

sendObject(Object data)
sendText(String text)

String

String toUpperCase()
String substring(int begin)
String substring(int begin, int end)
int indexOf(int ch)
int indexOf(String s)

Enum

int compareTo(E o)
String toString()
E valueOf(String)

Object

Class getClass()

JsonObject

add()
build()
getString()

Json

[static] createObjectBuilder()
[static] createReader(Reader r)

(you may detach this page)

